
Developing Scalable Java
Applications with Cacheonix

Introduction

Presenter: Slava Imeshev

•  Founder and main committer for open
source distributed Java cache Cacheonix

•  Frequent speaker on scalability
– simeshev@cacheonix.org
– www.cacheonix.org/blog/

Cacheonix

•  An open source distributed Java cache
•  Program your distributed applications as easy as
if they were singe-JVM applications, with APIs for:
•  Distributed cache
•  Strict data consistency
•  Distributed HashMap
•  In-memory data grid
•  Distributed locks
•  Distributed ConcurrentHashMap
•  Distributed data processing
•  Cluster management

•  Open source (LGPL)

When Single Server Is Not
Enough

•  Sooner or later your application will have to
process more requests than a single server
can handle

•  You need to distribute your application to
multiple servers (LAN, AWS, etc)

•  A.K.A. horizontal scalability

Scaling Horizontally

Distributed Systems

•  Processes communicate over the network
instead of local memory

•  Distributed programming is easy to do
poorly and surprisingly tricky to do well:

–  The network in unreliable
–  The latency varies wildly
–  The bandwidth is limited
–  Topology changes
–  The network is nonuniform

Problems to be Solved by
Distributed Applications

Distributed applications must address a lot of
concerns that don’t exist in single-JVM applications

1.  Scalability bottlenecks
2.  Reliability
3.  Concurrency
4.  State sharing
5.  Data consistency
6.  Load balancing
7.  Failure management
8.  Make sure it is easy to develop!

Horizontal Scalability

•  Horizontal scalability is an ability to handle
additional load by adding more servers

•  Horizontal scalability offers a much
greater benefit as compared to vertical
scalability (2-1000 times improvement in
capacity)

Bottleneck Problem

•  Horizontal scalability is hard to achieve
because of ever-present bottlenecks

•  A bottleneck is a shared server or a
service that:

–  All or most requests must go through
–  Request latency is proportional number

of requests (100 requests 1 ms/req.,
1000 requests 5 ms/req.)

–  Examples: Databases, Hadoop clusters,
file systems, mainframes

Bottleneck-Free System

Systems That Cannot Scale

•  Added 2 more app

servers
•  Expected x3

increase in capacity
•  Got only x2
•  System hit

scalability limit
•  Capacity of the

database or other
data source is a
bottleneck

Solution To Bottleneck Problem:
Distributed Cache

•  Cacheonix implements a distributed cache that
provides a large clustered in-memory data store
for hard-to-get, frequently-read data

•  The application is reading from the cache instead
of being stuck in reading from the slow database

Distributed Cache

Cacheonix provides:
•  Strict data consistency - the result of an

update is immediately observed on all
members of the cluster

•  Load balancing – cached data is distributed
evenly among servers as members join and
leave the cluster

•  High availability - Cacheonix provides
uninterrupted, consistent data access in
presence of server failures and cluster
reconfiguration

Distributed Cache

Cacheonix offers:
•  Cache coherence for strict data consistency
•  Partitioning for load balancing
•  Replication for high availability
•  Ease of use: Standard java.util.Map interface

Distributed Cache

Cacheonix cache plugins for ORM frameworks:
•  Hibernate
•  MyBatis
•  DataNucleus

Distributed Cache

Reliability Problem

Reliability is an ability of the system to continue to
function normally in presence of failures of cluster
members
•  Processing of user requests must be

automatically picked up by operational servers
•  Reliability is hard:

–  Cluster members leave and join
–  Networks fail
–  Servers die

Solution to Reliability Problem

Cacheonix provides:
•  Data replication
•  Even replica storage
•  Unique replication protocol
•  Instant recovery from failures

Distributed Concurrency
Problem

•  Threads must prevent reading partially updated
shared objects

•  Threads need to coordinate (synchronize)
access to shared objects

•  Distributed concurrency is hard:
–  Servers communicate using a network
–  Servers no longer share memory space
–  Servers may fail while holding locks

Distributed Concurrency
Solution

Cacheonix provides:
•  Distributed ReadWriteLocks
•  Distributed ConcurrentHashMap

Distributed ReadWriteLocks

•  Fault-tolerant for liveness
–  Locks are released when a lock-holding server

fails or leaves the cluster
•  Reliable for high availability

–  Locks are maintained as long as there is at
least a single live server in the cluster

•  Strictly consistent
–  All servers immediately observe mutual

exclusions
–  New members of the cluster observe existing

locks

Distributed ReadWriteLocks

 Problem of Distributed State
Sharing

•  Threads need to access shared state in order to
do useful work

•  State sharing in a single JVM is trivial because
of the local memory space

•  Distributed state sharing is hard:
–  Servers communicate using the network
–  Distributed applications no longer share the

memory space

Solution to Distributed State
Sharing Problem

Cacheonix provides:
•  Distributed HashMap

Distributed HashMap

•  Strictly consistent
–  Guarantees that all servers immediately see

the updates to the data
•  Easy to use

–  java.util.Map interface
•  Reliable

–  Retains the data as servers fail or join the
cluster

Designing for Running in Cluster

•  Store state shared between threads in Maps.

Convert the code below:

to:

Failure Management

Distributed applications experience failures not seen by
single-JVM applications because networks are unreliable
and servers die

•  Event: Cluster partitioning causes a minority cluster to
block

•  Result: distributed operations may block for extended
periods of time to avoid consistency errors

•  Event: Cluster reconfiguration leads to leaving the
minority cluster and joining the majority cluster

•  Result: Locks and other consistent operations in
progress are no longer valid and must be cancelled

Failure Management

Cacheonix:

•  Provides an ability to report a blocked cluster
state for communicating it to the end user

•  Detects change in cluster configuration (joining
other cluster) and cancel consistent operations
by throwing exceptions (lock()/unlock() and
put()/get())

•  Helps to prepare the application for dealing with
such conditions, minimally gracefully reporting a
error to the user.

Cluster Management and "
Data Distribution Protocol

 Cacheonix protocol:
•  Symmetric clustering

–  No single point of failure
•  Wire-level

–  Highest possible speed
•  Data distribution

–  Reliable
–  Strictly consistent

Cluster Management and "
Data Distribution Protocol

Cacheonix protocol enables:
•  Distributed caching,
•  Data replication,
•  Reliable distributed locks,
•  Consistent state sharing and
•  Cluster management

Distributed Architecture

Tying It All Together:

Distributed Data Management

Framework Cacheonix

How about single-server
applications?

Single-Server Architecture

Vertical Scalability

•  Vertical scalability is handling additional
load by adding more power to a single
machine

•  Vertical scalability is trivial to achieve. Just
switch to a faster CPU, add more RAM or
replace an HDD with an SSD

•  Vertical scalability can be limited by
bottlenecks:

–  Databases
–  Expensive calculations

Scaling Vertically with Cacheonix

•  Cacheonix provides a fast local cache
–  Eliminates database bottlenecks
–  Improves performance
–  Prepares for scaling in a cluster

•  Use cases
–  Local front cache
–  Local query cache
–  Local L2 cache for Hibernate, MyBatis and

DataNucleus

Q & A

Cacheonix

Open Source Distributed Data

Management Framework

•  Ease of development,
•  Reliable distributed cache,
•  Strict data consistency,
•  Replicated distributed locks,

•  State sharing in a cluster,
•  Distributed ConcurrentHashMap,
•  Cluster management,
•  Fast local cache,

And more!

Download Cacheonix at

downloads.cacheonix.org

Cacheonix wiki:

wiki.cacheonix.org

