
Architecture for Scaling Java
Applications to Multiple Servers !

Introduction

Presenter: Slava Imeshev

•  Founder, main committer for open source
distributed Java cache Cacheonix

•  Frequent speaker on scalability
– simeshev@cacheonix.org
– www.cacheonix.org/blog/

Single-Server Architecture

When Single Server Is Not
Enough

•  Sooner or later your application will have to
process more requests than a single server
can handle

•  You need to scale your application to multiple
servers A.K.A. to scale the application
horizontally (LAN, AWS, etc)

Scaling Horizontally

Distributed Systems

•  Processes communicate over the network
instead of local memory

•  Distributed programming is easy to do
poorly and surprisingly tricky to do well:

–  The network in unreliable
–  The latency varies wildly
–  The bandwidth is limited
–  Topology changes
–  The network is nonuniform
–  Network costs money

Problems to be Solved by
Distributed Applications

Distributed applications must address a lot of
concerns that don’t exist in single-JVM applications

1.  Horizontal scalability
2.  Reliability
3.  Concurrency
4.  State sharing
5.  Data consistency
6.  Load balancing
7.  Failure management
8.  Make sure it is easy to develop!

Horizontal Scalability

•  Horizontal scalability is an ability to handle

additional load by adding more servers

•  Horizontal scalability offers a much
greater benefit as compared to vertical
scalability (2-1000 times improvement in
capacity)

Problem of Horizontal Scalability

•  Horizontal scalability is hard to achieve

because of ever-present bottlenecks
•  A bottleneck is a shared server or a

service that:

–  All or most requests must go through
–  Request latency is proportional number

of requests (100 requests 1 ms/req.,
1000 requests 5 ms/req.)

–  Examples: Databases, Hadoop clusters,
file systems, mainframes

Bottleneck-Free System

Systems That Cannot Scale

•  Added 2 more app

servers
•  Expected x3

increase in capacity
•  Got only x2
•  System hit

scalability limit
•  Capacity of the

database or other
data source is a
bottleneck

Horizontal Scalability Solution:
Distributed Cache

•  Distributed cache provides large and fast in-
memory data store for frequently-read data

•  Application is reading from the cache instead of
reading from the slow database

Distributed Cache Requirements

Three key requirements:
•  Strict data consistency - an ability to

immediately observe the result of an update
on all members of the cluster

•  Load balancing – an ability to evenly distribute
cached data among servers as members join
and leave the cluster

•  High availability - an ability to provide
uninterrupted, consistent data access in
presence of server failures and cluster
reconfiguration

Distributed Cache Capabilities

Required capabilities:
•  Cache coherence for strict data consistency
•  Partitioning for load balancing
•  Replication for high availability

Reliability Problem

Reliability is an ability of the system to continue to
function normally in presence of failures of cluster
members
•  Processing of user requests must be

automatically picked up by operational servers
•  Reliability is hard:

–  Cluster members leave and join
–  Networks fail
–  Servers die

Solution to Reliability Problem

•  Data replication
•  Automatic recovery from failures

Distributed Concurrency
Problem

•  Threads need to coordinate (synchronize)
access to shared objects in order prevent
reading partially updated shared objects

Distributed Concurrency
Problem

•  Distributed concurrency is hard:
–  Servers communicate using a network
–  Servers no longer share memory space
–  Servers may fail while holding locks

Concurrency Solution

•  Distributed ReadWriteLocks

Distributed ReadWriteLocks

Required capabilities:
•  Fault-tolerant for liveness

–  Locks must be released when a lock-holding
server fails or leaves the cluster

•  Reliable for high availability
–  Locks must be maintained as long as there is

at least a single live server in the cluster
•  Strictly consistent

–  All servers must immediately observe mutual
exclusions

–  New members of the cluster must observe
existing locks

 Problem of Distributed State
Sharing

•  Threads need to access shared state in order to
do useful work

 Problem of Distributed State
Sharing

•  Distributed state sharing is hard:
–  Servers communicate using the network
–  Distributed applications no longer share the

memory space

Solution to Distributed State
Sharing Problem

•  Distributed HashMap

Distributed HashMap

Required capabilities:
•  Reliable

–  Must retain the data as servers fail or join the
cluster

•  Strictly consistent
–  Must guarantee that all servers immediately

see the updates to the data

Failure Management

Distributed applications experience failures not seen by
single-JVM applications because networks are unreliable
and servers die

•  Event: Cluster partitioning causes a minority cluster to
block

•  Result: distributed operations may block for extended
periods of time to avoid consistency errors

•  Event: Cluster reconfiguration leads to leaving the
minority cluster and joining the majority cluster

•  Result: Locks and other consistent operations in
progress are no longer valid and must be cancelled

Failure Management

Required capabilities:
•  An ability to report a blocked cluster state for

communicating it to the end user

•  Detect change in cluster configuration (joining
other cluster) and cancel consistent operations
by throwing exceptions (lock()/unlock() and
put()/get())

•  Prepare the application for dealing with such
condition, minimally gracefully reporting a error
to the user.

Cluster Management and !
Data Distribution Protocol

Wire-level protocol that enables
•  Distributed caching,
•  Data replication,
•  Reliable distributed locks,
•  State sharing and
•  Cluster management

Distributed Architecture

Tying It All Together:

Distributed Data Management

Framework

Ease of Development

The set of APIs provided by the distributed data
management framework should allow to program
distributed applications as easy as if they were
singe-JVM applications

“Best Practice is !
a technique or

methodology that,
through experience
and research, has

proven to reliably lead
to a desired result.”

Best Practice: Design for
Extreme Loads Upfront

•  Use the architecture for scaling the application
to multiple servers.

•  Design for scalability won’t emerge on its own
•  Design for loads the worst case x1000
•  Accommodate going distributed
•  Good designs are easy to optimize

•  Distributed systems are slower than local ones
because they must use network I/O and more CPU
to maintain coherence, partitioning and replication

•  Distributed systems require additional
configuration, testing and network infrastructure.

•  There are some licensing costs associated with
distributed APIs that work

Best Practice: Stay Local before
Going Distributed

Scale vertically first:
•  Better CPU, more RAM, faster network, SSDs

Optimize:
•  Avoid premature optimization
•  Profile using a decent profiler (JProfiler is great)
•  Use synthetic point load tests
•  Run realistic end-to-end load tests

Best Practice: Stay Local before
Going Distributed

Antipattern: !
“Cache Them All”

Don’t cache objects that are easy to get:
•  Caching makes them harder to get
•  Caching complicates design and

implementation

Antipattern: !
“Cache Them All”

Don’t cache objects that are easy to get:
•  Caching makes them harder to get
•  Caching complicates design and

implementation
Don’t cache write-mostly objects:
•  Little to no benefit
•  Cache maintenance becomes an expense
Never cache memory allocations

Best Practice: !
Cache Right Objects

Cache objects that are expensive to get
•  Results of database queries
•  I/O
•  XML
•  XSL

Best Practice: !
Cache Right Objects

Cache objects that are expensive to get
•  Results of database queries
•  I/O
•  XML
•  XSL
Cache objects that are read-mostly
•  Guarantees high hit/miss ratio and
•  Low cache maintenance and
•  Low cache coherence and replication costs

Best Practice: Dedicate Separate
Network for Backend Traffic

Best Practice: Use Multicast

•  Modern caching solutions can use multicast
•  Significant reduction in network traffic (~100s

of times)

Problem:

•  Ops usually disable multicast in production

without explanation

Solution:

•  Allow them to disable multicast only on edge

routers and switches

Best Practice: Use Existing
Solutions

•  Don’t reinvent the wheel (AKA infrastructure software)
•  Developing a distributed framework is a lot fun, but:
•  Data load balancing is trivial…
 … and the rest is extremely hard:
•  Strictly consistent data access in presence of server

failures; reliable clustering; replication for high
availability; queue theory, state machines, NIO,
sockets, messaging…

•  It takes about 3-4 years to get it right. What is your
plan for the next 3 years?

Q & A

Cacheonix

Open Source Distributed Data

Management Framework

•  Ease of development,
•  Reliable distributed cache,
•  Strict data consistency,
•  Replicated distributed locks,

•  State sharing in a cluster,
•  Distributed ConcurrentHashMap,
•  Cluster management,
•  Fast local cache,

And more!

Download Cacheonix at

downloads.cacheonix.org

Cacheonix wiki:

wiki.cacheonix.org

