Architecture for Scali ngJava
APPlications to Multiplc Servers

Introduction

Presenter: Slava Imeshev

e Founder, main committer for open source
distributed Java cache Cacheonix

e Frequent speaker on scalability
— simeshev@cacheonix.org
— Www.cacheonix.org/blog/

_
.

) EArkangp)

X

Usgrs

& Notwork 3

Web Application

Y

Local Front Cache

Y

Sin gle~5<:rver Architecture

Business Logic

Y

Local Hash Map and
Locks

Data Tier
(ORM Framework)

v

Local Level 2 Cache

Y

Single Source of
Truth (Database,
Hadoop, etc)

When Singlc Server s Not
f‘:nougln

e Sooner or later your application will have to
process more requests than a single server
can handle

e You need to scale your application to multiple
servers A.K.A. to scale the application
horizontally (LAN, AWS, etc)

Scaling Horizonta"9

=g

User Application

Cluster

—

User

Distributed Systcms

Processes communicate over the network
instead of local memory

Distributed programming is easy to do
poorly and surprisingly tricky to do well:

"he network in unreliable
ne latency varies wildly
ne bandwidth is limited
opology changes

The network is nonuniform
Network costs money

Problems to be Solved bg
Distributed APPIications

Distributed aPpIication_s must address a lot of
concerns that don't exist in single-JVM applications

1. Horizontal scalability

Reliability

Concurrency

State sharing

Data consistency

Load balancing

Failure management

Make sure it is easy to develop!

XNV A WN

Horizontal Scalability

Horizontal scalability is an ability to handle
additional load by adding more servers

Horizontal scalability offers a much
greater benefit as compared to vertical
scalability (2-1000 times improvement in

capacity)

Problem of Horizontal Scalabilitg

e Horizontal scalability is hard to achieve
because of ever-present bottlenecks

e A bottleneck is a shared server or a
service that:

— All or most requests must go through

— Request latency is proportional humber
of requests (100 requests 1 ms/req.,
1000 requests 5 ms/req.)

— Examples: Databases, Hadoop clusters,
file systems, mainframes

Bottleneck-Free Sgstcm

OK - Throughput 5,000 requests/sec

<

G.OOO requests/sec €,OOO requests/sec

/

az/

-

Application server
Users PP

Database

5,000 requests/second

10,000 requests/second

Sgstcms That Cannot Scale

BAD- Throughput is 10,000 requests/sec, not

Added 2 more app 15,000
servers ° <
Expected x3 | * -
INnCcrease In capacity it s
Got only x2 e

System hit
scalability limit

Ca aCity Of the - 5,000 requestasecond Capacity: 10,000 requests/sec
database or other

data source is a i

bottleneck

Application server

5,000 requests/second

Horizontal Scalabilitg Solution:
Distributed Cache

e Distributed cache provides large and fast in-
memory data store for frequently-read data

o Application is reading from the cache instead of
reading from the slow database

Distributed Cache chuircments

Three key requirements:

Strict data consistency - an ability to

Immediately observe the result of an update
on all members of the cluster

Load balancing — an ability to evenly distribute
cached data among servers as members join
and leave the cluster

High availability - an ability to provide

uninterrupted, consistent data access in
presence of server failures and cluster
reconfiguration

Distributed Cache Cal:)abilitics

Required capabilities:

e (Cache coherence for strict data consistency
e Partitioning for load balancing

e Replication for high availability

Rcliabilitg Problem

Reliability is an ability of the system to continue to
function normally in presence of failures of cluster
members

e Processing of user requests must be
automatically picked up by operational servers

e Reliability is hard:
— Cluster members leave and join
— Networks fail
— Servers die

Solution to Rcliabilitg Problem

o Data replication
o Automatic recovery from failures

Distributed Concurrcncg
Problem

e Threads need to coordinate (synchronize)
access to shared objects in order prevent
reading partially updated shared objects

Distributed Concurrcncg
Problem

e Distributed concurrency is hard:
— Servers communicate using a network
— Servers no longer share memory space
— Servers may fail while holding locks

Concurrcncg Solution

e Distributed ReadWriteLocks

Distributed ReadWritelocks

Required capabilities:
e Fault-tolerant for liveness

— Locks must be released when a lock-holding
server fails or leaves the cluster

e Reliable for high availability

— Locks must be maintained as long as there is
at least a single live server in the cluster

e Strictly consistent

— All servers must immediately observe mutual
exclusions

— New members of the cluster must observe
existing locks

Problem of Distributed State
Sharing

e Threads need to access shared state in order to
do useful work

Problem of Distributed State
Sharing

e Distributed state sharing is hard:
— Servers communicate using the network

— Distributed applications no longer share the
memory space

Solution to Distributed State
Sharing Problem

o Distributed HashMap

Distributed HashMaP

Required capabilities:
e Reliable

— Must retain the data as servers fail or join the
cluster

e Strictly consistent

— Must guarantee that all servers immediately
see the updates to the data

Failure Managcment

Distributed applications experience failures not seen by
single-JVM applications because networks are unreliable
and servers die

. E?/el?(t: Cluster partitioning causes a minority cluster to
0C

e Result: distributed operations may block for extended
periods of time to avoid consistency errors

e Event: Cluster reconfiguration leads to leaving the
minority cluster and joining the majority cluster

e Result: Locks and other consistent operations in
progress are no longer valid and must be cancelled

Failure Managcmcnt

Required capabilities:

e An ability to report a blocked cluster state for
communicating it to the end user

e Detect change in cluster configuration (joining
other cluster) and cancel consistent operations
oy throwing exceptions (lock()/unlock() and

put()/get()

e Prepare the application for dealing with such
condition, minimally gracefully reporting a error
to the user.

Cluster Managcmcnt and
Data Distribution Protocol

Wire-level protocol that enables
e Distributed caching,

Data replication,

Reliable distributed locks,
State sharing and

Cluster management

istributed Architecture

Load Balancer

Server 0 v Server N v
Web Application » Web Application
Distributed Distributed
Front Cache - - < » Front Cache
Distributed M aglaugsg:;rent Distributed
Business Logic t=f{ Hash Map j=—{jp - e}~ Hash Map [|«gt=t Business Logic
and Locks Distribution and Locks
+ Protocol +
Data Tier Data Tier
(ORM (ORM
Framework) Framework)
Distributed Distributed
tef—l
Level 2 Cache - - Level 2 Cache

Y

Single Source of
Truth (Database)

Tgi ng It Al Togcther:
Distributed Data Management
Framework

. Strictly-
Reliable i
s Distributed Data consistent Bel!able Cluster

Distributed L. Distributed
Processing with Distributed X Event
Cache ReadWriteLock
Affinity API HashMap API
API AP API

SR B B B

Cluster Management and Data Distribution Protocol

4

e e s

Ease of Devclopment

The set of APIs provided by the distributed data
management framework should allow to program
distributed applications as easy as if they were
singe-JVM applications

“Best Practice is
a technic]ue or
methoclologg that,
tl‘lrouglw exPerience
and researcln, has
proven to reliablg lead
to a desired result.”

Best Practice: Dcsi%n for
Extreme Loads UP ront

Use the architecture for scaling the application
to multiple servers.

Design for scalability won’ t emerge on its own
Design for loads the worst case x1000
Accommodate going distributed

Good designs are easy to optimize

Best Practice: Sta Yy | ocal before
Going Distributed

e Distributed systems are slower than local ones
because they must use network I/O and more CPU
to maintain coherence, partitioning and replication

e Distributed systems require additional
configuration, testing and network infrastructure.

e There are some licensing costs associated with
distributed APIs that work

Best Practice: Sta Yy | ocal before
Going Distributed

Scale vertically first:
o Better CPU, more RAM, faster network, SSDs

Optimize:

e Avoid premature optimization

e Profile using a decent profiler (JProfiler is great)
e Use synthetic point load tests

e Run realistic end-to-end load tests

Antipattem:
“Cache Them All”

Don’ t cache objects that are easy to get:
e (Caching makes them harder to get

e (Caching complicates design and
Implementation

AntiPattcrn:
“Cache Them All”

Don’ t cache objects that are easy to get:
e (Caching makes them harder to get

e (Caching complicates design and
Implementation

Don’ t cache write-mostly objects:
e Little to no benefit
e (Cache maintenance becomes an expense
Never cache memory allocations

Best Practice:
Cache Right Ol:)jccts

Cache objects that are expensive to get
e Results of database queries

e I/O
e XML
e XSL

Best Practice:
Cache Right Ol:)jccts

Cache objects that are read-mostly

e Guarantees high hit/miss ratio and
e Low cache maintenance and
e Low cache coherence and replication costs

Best Practice: Dedicate SeParate
Network for Backend Traffic

Backend Data Grid

Application traffic Application traffic

Best Practice: Use Multicast

e Modern caching solutions can use multicast

e Significant reduction in network traffic (~100s
of times)

Problem:

e Ops usually disable multicast in production
without explanation
Solution:

e Allow them to disable multicast only on edge
routers and switches

Best Practice: Use Existing
Solutions

e Don’t reinvent the wheel (AKA infrastructure software)
e Developing a distributed framework is a lot fun, but:
e Data load balancing is trivial...

... and the rest is extremely hard:

e Strictly consistent data access in presence of server
failures; reliable clustering; replication for hicl;h
availability; queue theory, state machines, NIO,
sockets, messaging...

e It takes about 3-4 years to get it right. What is your
plan for the next 3 years?

Q& A

Cacheonix
OPcn Source Distributed Data
Managcmcnt Framework

Ease of development, « State sharing in a cluster,
Reliable distributed cache, < Distributed ConcurrentHashMap,
Strict data consistency, Cluster management,

Replicated distributed locks, ¢ Fast local cache,

And more!

Download Cacheonix at
downloads.cacheonix.org

Cacheonix wiki:
wiki .cachconix.org

