
Copyright © 2011 Project Cacheonix

Best Practices !
for Scaling Java

Applications with
Distributed Caching !

Copyright © 2011 Project Cacheonix

Introduction

Presenter: Slava Imeshev

• Main committer for Cacheonix, open source
distributed Java cache

•  Core expertise in reliable distributed systems
– simeshev@cacheonix.org
– www.cacheonix.org/blog/

Copyright © 2011 Project Cacheonix

Copyright © 2011 Project Cacheonix

Definitions

Copyright © 2011 Project Cacheonix

Performance

Number of operations per unit of time
•  Requests per second
•  Pages per second
•  Transactions per second

Performance is not scalability (is 200 pages/s
more scalable than 150 pages/s?)

Copyright © 2011 Project Cacheonix

Scalability

Ability to handle additional load by adding
more computational resources

•  Vertical scalability
•  Horizontal scalability

Copyright © 2011 Project Cacheonix

Vertical Scalability

•  Vertical scalability is handling additional
load by adding more power to a single
machine

•  Vertical scalability is trivial to achieve. Just
switch to a faster CPU, add more RAM or
replace an HDD with an SSD

•  Vertical scalability has a hard limit (2-5
times improvement in capacity)

Copyright © 2011 Project Cacheonix

Horizontal Scalability

•  Horizontal scalability is handling additional
load by adding more servers

•  Horizontal scalability offers much greater
benefit (2-1000 times improvement in
capacity)

•  Horizontal scalability is much harder to
achieve as adding servers requires
ensuring data consistency and coherent
view of cache updates

Copyright © 2011 Project Cacheonix

Scalability Problem

Copyright © 2011 Project Cacheonix

Normal Situation

Copyright © 2011 Project Cacheonix

System Cannot Scale

•  Added 2 more app

servers
•  Expected x3

increase in capacity
•  Got only x2
•  System hit

scalability limit
•  Database capacity

is a bottleneck

Copyright © 2011 Project Cacheonix

Cache

An area of local memory that holds a copy of

frequently accessed data that is otherwise
expensive to get or compute

Copyright © 2011 Project Cacheonix

Key Cache Parameters

•  Cache size defines how many elements a cache

can hold

Copyright © 2011 Project Cacheonix

Key Cache Parameters

•  Cache size defines how many elements a cache

can hold
•  Cache eviction algorithm defines what to do when

the number of elements in cache exceeds the size

Copyright © 2011 Project Cacheonix

Key Cache Parameters

•  Cache size defines how many elements a cache

can hold
•  Cache eviction algorithm defines what to do when

the number of elements in cache exceeds the size
•  Time-to-live defines time after that a cache key

should be remove from the cache (expired)

Copyright © 2011 Project Cacheonix

Cache Eviction Algorithm

Least Recently Used (LRU) works best
•  Catches temporal and spatial locality

Copyright © 2011 Project Cacheonix

Cache Eviction Algorithm

Least Recently Used (LRU) works best
•  Catches temporal and spatial locality

Most of other cache algorithms (MRU, LFU, etc)
•  Not applicable to most of practical situations
•  Subject of cache poisoning
•  Expensive from performance point of view

Copyright © 2011 Project Cacheonix

Cache Types

•  Application cache
•  Second level (L2) cache
•  Hybrid cache

Copyright © 2011 Project Cacheonix

Application Cache

Copyright © 2011 Project Cacheonix

Level-2 Cache

Copyright © 2011 Project Cacheonix

Hybrid Cache

Copyright © 2011 Project Cacheonix

Cache Architectures

•  Local
•  Distributed

Copyright © 2011 Project Cacheonix

Local Cache

•  All elements are stored in local memory
•  Size is limited by a single JVM’s heap

Copyright © 2011 Project Cacheonix

Distributed Cache

•  Cache elements are distributed across a set

servers (a cluster)
•  Cache size is a sum of cache partitions in case

of a partitioned cache
•  Cache size can be much bigger than a single

Java VM
•  Distributed cache can scale horizontally by

adding more servers

Copyright © 2011 Project Cacheonix

Distributed Cache Example!
(Cacheonix)

Copyright © 2011 Project Cacheonix

Distributed Cache

Important characteristics:
•  Partitioning for load balancing

Copyright © 2011 Project Cacheonix

Distributed Cache

Important characteristics:
•  Partitioning for load balancing
•  Replication for high availability

Copyright © 2011 Project Cacheonix

Distributed Cache

Important characteristics:
•  Partitioning for load balancing
•  Replication for high availability
•  Cache coherence for data consistency

Copyright © 2011 Project Cacheonix

Distributed Cache

Important capabilities:
•  Partitioning for load balancing
•  Replication for high availability
•  Cache coherence for data consistency
•  Fault tolerance for high availability

Not all systems have these capabilities

Copyright © 2011 Project Cacheonix

Availability and Fault
Tolerance

Ability to continue to operate despite of
failure of members of the cluster

•  When applied to distributed caching, HA
means an ability to provide uninterrupted,
consistent data access

Copyright © 2011 Project Cacheonix

Copyright © 2011 Project Cacheonix

Solution to Scalability
Problem

Copyright © 2011 Project Cacheonix

Add Distributed Cache

•  Bottleneck is

removed
•  System is

reading mostly
from the
cache

•  Distributed
cache provides
large cache
and load
balancing

Copyright © 2011 Project Cacheonix

In-Process Distributed
Cache

An in-process
distributed cache
provides memory-like
speed and coherent
and consistent data
access

Copyright © 2011 Project Cacheonix

Copyright © 2011 Project Cacheonix

Copyright © 2011 Project Cacheonix

Best Practices

Copyright © 2011 Project Cacheonix

Best Practice: Scale Out
by Adding More Servers

More cache nodes means:
•  Smaller partition size
•  Lesser node traffic
•  Reduced load
•  Smaller GC delays
•  Higher availability

Copyright © 2011 Project Cacheonix

Best Practice: Scale Out
by Adding More Servers

More cache nodes means:
•  Bigger distributed cache
•  Better performance

Copyright © 2011 Project Cacheonix

Best Practice: Design for
Scalability Upfront

•  Design for scalability won’t emerge on its own
•  Design for loads the worst case x10
•  Accommodate going distributed
•  Good designs are easy to optimize

Copyright © 2011 Project Cacheonix

Best Practice: !
Optimize before Caching

Optimize late:
•  Avoid premature optimization
•  Profile using a decent profiler. We prefer JProfiler
•  Grow a local profiling expert
•  Use synthetic point load tests
•  Run realistic end-to-end load tests

Copyright © 2011 Project Cacheonix

Best Practice: Automate
Problem Detection

Automate detection of performance problems:
•  PMD
•  FindBugs
•  KlocWork

Copyright © 2011 Project Cacheonix

•  Scale vertically first (better CPU, more RAM)

Best Practice: Stay Local
before Going Distributed

Copyright © 2011 Project Cacheonix

•  Scale vertically first (better CPU, more RAM)
•  Go distributed only when opportunities for vertical

scalability are completely exhausted

Best Practice: Stay Local
before Going Distributed

Copyright © 2011 Project Cacheonix

•  Scale vertically first (better CPU, more RAM)
•  Go distributed only when opportunities for vertical

scalability are completely exhausted
•  A distributed cache is slower than a local one

because it must use network I/O and more CPU to
maintain coherence, partitioning and replication

Best Practice: Stay Local
before Going Distributed

Copyright © 2011 Project Cacheonix

•  Scale vertically first (better CPU, more RAM)
•  Go distributed only when opportunities for vertical

scalability are completely exhausted
•  A distributed cache is slower than a local one

because it must use network I/O and more CPU to
maintain coherence, partitioning and replication

•  Distributed systems require additional
configuration, testing and network infrastructure.

Best Practice: Stay Local
before Going Distributed

Copyright © 2011 Project Cacheonix

•  Scale vertically first (better CPU, more RAM)
•  Go distributed only when opportunities for vertical

scalability are completely exhausted
•  A distributed cache is slower than a local one

because it must use network I/O and more CPU to
maintain coherence, partitioning and replication

•  Distributed systems require additional
configuration, testing and network infrastructure.

•  There are some licensing costs associated with
distributed caching solutions that work

Best Practice: Stay Local
before Going Distributed

Copyright © 2011 Project Cacheonix

Best Practice: !
Cache Right Objects

Cache objects that are expensive to get
•  Results of database queries
•  I/O
•  XML
•  XSL

Copyright © 2011 Project Cacheonix

Best Practice: !
Cache Right Objects

Cache objects that are expensive to get
•  Results of database queries
•  I/O
•  XML
•  XSL
Cache objects that are read-mostly
•  Guarantees high hit/miss ratio and
•  Low cache maintenance and
•  Low cache coherence and replication costs

Copyright © 2011 Project Cacheonix

Antipattern: !
“Cache Them All”

Don’t cache objects that are easy to get:
•  Caching makes them harder to get
•  Caching complicates design and

implementation

Copyright © 2011 Project Cacheonix

Antipattern: !
“Cache Them All”

Don’t cache objects that are easy to get:
•  Caching makes them harder to get
•  Caching complicates design and

implementation
Don’t cache write-mostly objects:
•  Little to no benefit
•  Cache maintenance becomes an expense

Copyright © 2011 Project Cacheonix

Copyright © 2011 Project Cacheonix

Copyright © 2011 Project Cacheonix

Best Practice: Implement
java.io.Externalizable

Default Java serialization is too slow
•  Does a lot of useless things, automatically
•  Was developed with networked object

transfers in mind
•  Is done by simply implementing signature

interface java.io.Serializable

Copyright © 2011 Project Cacheonix

Best Practice: Implement
java.io.Externalizable

java.io.Externalizable
•  Can be significantly faster (2-8 times

than default serialization)
•  2-4 times smaller byte footprint – higher

network throughput
•  Requires additional code

Copyright © 2011 Project Cacheonix

Externalizable Example

Copyright © 2011 Project Cacheonix

Externalizable Example

Copyright © 2011 Project Cacheonix

Externalizable Example

Copyright © 2011 Project Cacheonix

Best Practice: Test for
Serializability

•  You must ensure that the object that was
received at another end is the object that was
sent

•  Cache keys AND cached values routinely travel
across the network

•  It is critical to write proper serialization tests
for keys and values

Copyright © 2011 Project Cacheonix

Best Practice: Test for
Serializability

•  Test pattern: Serialize, deserialize, compare

Copyright © 2011 Project Cacheonix

Best Practice: Test for
Serializability

Copyright © 2011 Project Cacheonix

Best Practice: Test for
Serializability

Copyright © 2011 Project Cacheonix

Best Practice: Test for
Serializability

Copyright © 2011 Project Cacheonix

Best Practice: !
Split Large RAM

Between Multiple JVMs

Big fat boxes have become common:
•  8 CPU cores 32Gb RAM
•  All modern 64 bit JVMs support large heaps

Copyright © 2011 Project Cacheonix

Best Practice: !
Split Large RAM

Between Multiple JVMs

Big fat boxes have become common:
•  8 CPU cores 32Gb RAM
•  All modern 64 bit JVMs support large heaps
Problem:
•  Large heaps mean long major GCs (10s of

seconds)
•  Cluster nodes seem to appear gone causing

cluster configuration jitter

Copyright © 2011 Project Cacheonix

Best Practice: !
Split Large RAM

Between Multiple JVMs

Solution: Split large RAM into multiple 1-2Gb JVMs
•  Distributed caching allows to split data processing

into many JVMs.
•  Shorter major GCs mean lesser latency and more

stable cluster
•  Nice side effects such as higher availability, better

load balancing and improved concurrency

Copyright © 2011 Project Cacheonix

Best Practice: !
Split Large RAM Between

Multiple JVMs

Copyright © 2011 Project Cacheonix

Problem: Distributed
Caching Adds Network

Traffic

•  Remote partition access
•  Cache coherency traffic
•  Replication traffic

Copyright © 2011 Project Cacheonix

Problem: Distributed
Caching Adds Network

Traffic

•  Remote partition access
•  Cache coherency traffic
•  Replication traffic
Cache being on the same network with the

application leads to:
•  Increased cache access latency
•  Increased application response time

Copyright © 2011 Project Cacheonix

Best Practice: !
Provide Dedicated

Network Infrastructure

Solution: Dedicate separate network to

distributed cache traffic:
1.  Add a network card. Most of the modern

rackmount servers already have two NICs
2.  Add a separate switch to serve the

distributed cache traffic

Copyright © 2011 Project Cacheonix

Copyright © 2011 Project Cacheonix

Best Practice: Use
Multicast

•  Most of modern caching solutions efficiently
utilize multicast.

•  If done right, multicast provides significant
reduction in network traffic (~100 of times)

Copyright © 2011 Project Cacheonix

“Best Practice is !
a technique or

methodology that,
through experience
and research, has

proven to reliably lead
to a desired result.”

Copyright © 2011 Project Cacheonix

Copyright © 2011 Project Cacheonix

Q&A

Q: How does replication work in

Cacheonix? Is it master/slave?
A: Cacheonix replication protocol is more

advanced then master/slave. In Cacheonix
every cache node carries a partition that it
owns, and a set of partition replicas. This
allows Cacheonix restore operational partition
from a replica automatically and
instantaneously.

Copyright © 2011 Project Cacheonix

Q&A

Q: Does Cacheonix allow to access cached

data so that some clients see updates in
progress and some don’t

A: Cacheonix supports this scenario by
providing distributed reliable read/write locks.
If the code wants to be shielded from the
transactions in progress it should access the
cache inside a lock. Otherwise just read/write
the data as usual.

Copyright © 2011 Project Cacheonix

Q&A

Q: So, Cacheonix provides strict data

consistency when it comes to updates.
How does it work?

A: Cacheonix builds its data access capability on
its very sophisticated cluster management
protocol that allows it to guarantee consistent
data access even when servers fail, leave or
join the cluster while keeping latency low.
Cacheonix supports disabling strict
consistency for situations when speed is more
important.

Copyright © 2011 Project Cacheonix

Q&A

Q: Does Cacheonix provide data grid

functionality?
A: Cacheonix fully supports operating as a data

grid where a cache is the only source of
application data. Cacheonix does so by
providing DataSource and DataStore APIs
that it uses as a backed data source for its
read-through and write-through caches.

Copyright © 2011 Project Cacheonix

Q&A

Q: How does Cacheonix compare to other

distributed caching products?
A: Unlike other products Cacheonix allows to

utilize multi-core machines fully by running
each cache in a separate thread. Cacheonix
offers least time for recovery from server
failures by making all servers equal, by not
having a single point of failure. Also,
Cacheonix offers many unique features that
are great for developing low-latency systems
such as coherent local front caches and read-
ahead caches.

Copyright © 2011 Project Cacheonix

Q&A

Q: Should I have a single cache or many

caches?
A: A best practice is to have multiple caches

that names reflect types values stored in
them. Usually those are either per-object
such as my.app.Invoice or per-query such as
my.app.InoiceQueryResult. Hiberhate requres
cache names match names of persistent
objects. This practice provides best
concurrency Cacheonix as it runs each cache
in a separate thread.

Copyright © 2011 Project Cacheonix

Q&A

Q: Aren’t automatic serialization frameworks

more convenient that implementing
Externalizable, especially when it comes to
versioning?

A: First, Externalizable is the closest to wire speed when
it comes to serialization. Second, even if a
serialization framework can enforce a cached object
being a pure value object, there will be hard-to figure
out production failures associated with different
versions of the system expecting data and not finding
it. On the contrary, implementing Externalizable and
following best practices for production change
management produces faster and more stable
system.

Copyright © 2011 Project Cacheonix

Q&A

Q: I am deploying my application in a

cloud. How do I know if my cloud
provider follows best practices?

A: The best way to find out is to ask them
directly. E-mail, call them, or file a request
through their web support.

Copyright © 2011 Project Cacheonix

Need help with scaling your application and
improving its performance with distributed

caching?
Visit Cacheonix at www.cacheonix.org

Copyright © 2011 Project Cacheonix

Downloading Cacheonix

http://downloads.cacheonix.org

Copyright © 2011 Project Cacheonix

Thank you!

